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Abstract

In this paper, optimal control theory is used to minimize the total mean drag for a circular cylinder wake flow in the
laminar regime (Re = 200). The control parameters are the amplitude and the frequency of the time-harmonic cylinder
rotation. In order to reduce the size of the discretized optimality system, a proper orthogonal decomposition (POD)
reduced-order model (ROM) is derived to be used as state equation. We then propose to employ the trust-region proper
orthogonal decomposition (TRPOD) approach, originally introduced by Fahl [M. Fahl, Trust-region methods for flow
control based on reduced order modeling, Ph.D. Thesis, Trier University, 2000], to update the reduced-order models
during the optimization process. A lot of computational work is saved because the optimization process is now based only
on low-fidelity models. A particular care was taken to derive a POD ROM for the pressure and velocity fields with an
appropriate balance between model accuracy and robustness. The key enablers are the extension of the POD basis func-
tions to the pressure data, the use of calibration methods for the POD ROM and the addition in the POD expansion of
several non-equilibrium modes to describe various operating conditions. When the TRPOD algorithm is applied to the
wake flow configuration, this approach converges to the minimum predicted by an open-loop control approach and leads
to a relative mean drag reduction of 30% at reduced cost.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction
1.1. Reduced-order models in optimization
During the last decade, the optimal control theory 1 has emerged as a new approach to solve active flow control

and aerodynamic shape design problems. Indeed, these problems can be reduced [2] to the minimization or max-
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imization of an objective functional 7 according to n control or design parameters ¢ = (¢, ¢s, . . ., ¢,) under some
constraints. However, whatever the specific class of numerical methods generally considered (methods of descent
type, stochastic methods), the computational costs (CPU and memory) related to the resolution of optimization
problems are so important that they become unsuited to the applications of flow control for three-dimensional
turbulent flows. The application in an immediate future of active control to complex flows is thus conditioned by
the development of approximate models of the system [3]. The objective of these surrogate models [4]is to capture
the essence of the physics of the controlled system while reducing the costs associated to the solution of the non-
linear state equations. As a result, there have been many studies devoted to the development of Reduced-Order
Models (ROM) that serve as low-dimensional approximation models to the large-scale discretized Navier—
Stokes equations [5], for a review of the different reduced-order modelling techniques. The model reduction
method discussed in this paper fall in the category of reduced basis approaches. For the reduced bases, a number
of choices exist [6], for a presentation: Lagrange basis, Hermite basis, Taylor basis, proper orthogonal decom-
position (POD) basis [7,8], Krylov basis [9], Centroidal Voronoi Tessellations (CVT) basis [10], balanced
POD basis [11], etc. Today, the most popular reduced-order modelling approach for complex systems in fluid
mechanics is based on POD. This study is restricted to this case: we consider that the unsteady non-linear dynam-
ics of the flow is modelled via a reduced-order model based on POD (POD ROM).

The POD (and other similar techniques of ROM) can be viewed as a method of information compression.
Essentially, the POD algorithm try to remove “redundant” information (if any) from the data base. As a con-
sequence, the ability of POD modes to approximate any state of a complex system is totally dependent of the
information originally contained in the snapshot set used to generate the POD functions. Thus, a POD basis
cannot contain more information than that contained in the snapshot set. The generation of “good” snapshot
set is then crucial to the success of use of POD ROM approach in a bifurcation analysis [12-14] or more gen-
erally in an optimization setting. Since the POD basis is intrinsic to a particular flow, we need to give special
attention to adapt the POD ROM (and the POD basis naturally) to changes in physics when the flow is altered
by control. This central question is discussed in more details in [15] where two strategies are evidenced for use
of POD ROM in an optimization setting. A first approach consists in distributing uniformly in the control
parameter space the snapshot ensemble to be used for POD. However, in this case, a lot of runs of the
high-dimensional code would be necessary to generate the snapshots and that more especially as the number
of the control parameters is important. Therefore, developing systematic and rational methodologies for gen-
erating good snapshots set is a critical enabler for effective reduced-order modelling, since a POD basis is only
as good as the snapshot set used to generate it. Very recently, it was demonstrated in [10] that Centroidal
Voronoi Tessellations could be one method of intelligent sampling in parameter space. Failing this, a simpler
method to implement is to generate generalized POD functions by forcing the flow with an ad-hoc time-depen-
dent excitation that is rich in transients [16]. The second approach consists of an adaptive method in which
new snapshots are regularly determined during the optimization process when the effectiveness of the existing
POD ROM to represent accurately the controlled flow is considered to be insufficient [17-19].

At this point, two key questions still remain:

(1) How to decide automatically whether or not a POD ROM has to be adapted to a new flow
configuration?

(2) Can we demonstrate under certain conditions (which should ideally be most general as possible) that the
optimal solution based on the POD ROM corresponds to a local optimizer for the original problem?

The main drawback of this second approach is that for adaptively updating a reduced basis during an opti-
mization process, new solves of the high-dimensional approximations of the Navier—Stokes equations need to
be done. Since these simulations are costly, this approach is not appropriate for real-time control flow.

1.2. A generic configuration of separated flows: the cylinder wake flow
Due to its simple geometry and its representative behavior of separated flows [20], the cylinder wake flow

has been broadly studied this past decade to experiment some control methods that could be used later in
more complex engineering configurations. The majority of these studies were motivated by the experiments
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Table 1
Characteristics of the different algorithms previously used in the literature to control the laminar wake flow with an optimal control
approach

Reference Re Type of optimal State equation Cost functional Relative mean PSR
control law drag reduction

[38] 200 Sinusoidal NS Drag-related 30% Unknown
A=3 (certainly <1)
Sty = 0.75

[39] 100 Sinusoidal NS Target flow Unknown Unknown
A=13.25 (Re =2) (certainly <1)
Sty = 1.13

[40] 150 Any NS Power drag + power control 15% 51

[15] 200 Sinusoidal POD ROM Drag-related 25% 0.26
A=22
Ste = 0.53

Present study 200 Sinusoidal POD ROM Drag 30% 0.07
A=425
St =0.738

The present study is included for comparison. ‘Unknown’ means that the value was not found in the article, an estimate is then given when
it is possible. In the column entitled ““State equation”, ‘NS’ means Navier—Stokes equations and ‘POD ROM’ means POD Reduced-Order
Model. A similar table can be found in [15].

of [21] where 80% of relative’ mean drag reduction was empirically found at Re = 15,000 by unsteady rotary
oscillation of the cylinder. This experimental work was followed by a series of numerical [22-30] and exper-
imental investigations [31-34]. Recently, due to the maturity of control theory, optimization methods and
computational fluid dynamics, optimal and suboptimal approaches attracted increased attention in flow con-
trol setting [35-37]. For example, in [38-40] the optimal control theory was used with the two-dimensional
Navier—Stokes equations as the state equation to control by rotary oscillation the unsteady wake of the cyl-
inder (see Table 1 for the characteristics of these approaches). An attractive element of the optimal control
approach is that the control design is explicitly based on the cost functional. However, the very large compu-
tational costs (CPU and memory), involved in the resolution of the optimality system commonly used in the
optimal control theory [2], prevent to solve routinely optimization problems based on the three-dimensional
Navier—Stokes equations.” For cutting down these numerical costs different approaches are possible [3], for a
review. One promising approach is to first develop POD ROM to approximate the fluid flow and then to opti-
mize exactly the reduced-order models as it was already discussed in Section 1.1. A general discussion of the
use of approximation models in optimization can be found in [44]. In this study, we want to develop a low-cost
optimal control approach for the drag minimization of the cylinder wake with rotary motion for control law
(see Fig. 1). In addition, as opposed to what was made in [15], where the cost functional to be minimized was
not the drag but a drag-related cost function (the turbulent kinetic energy contained in the wake), we will
directly take here for cost functional the mean drag coefficient (viscous and pressure contributions). Then,
to reduce as much as possible the computational costs associated to the present study, the flow is considered
two-dimensional and in the laminar regime. However, the methodology presented here that consists of
combining the optimal control approach and a POD ROM should easily be expanded to three-dimensional
and turbulent flows.

! Here, and in the following occurrences in the text, the relative mean drag reduction is defined as ((Cp)u" ™ — (Cp)reed) /(Cp)unioreed
where (Cp), the mean temporal drag coefficient estimated over a finite horizon T, is defined in (3). The terms ‘unforced” and ‘forced’ are
used respectively for non-rotating and rotating cylinder.

2 Two exceptions are the seminal work of [41] and the subsequent study of [42] where the optimal control theory is used to determine
controls that reduce the drag of a turbulent flow in a three-dimensional plane channel simulated at Re, = 180. More recently, an optimal
control approach was used in [43] to reduce the sound generated by a two-dimensional mixing layer.
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Fig. 1. Controlled flow configuration.

In their numerical investigation of the controlled wake flow by rotary oscillation of the cylinder, Protas and Wes-
freid [30]argued that in the supercritical regime, the effectiveness of the control in terms of drag reduction increases
with the Reynolds number. This important result was recently confirmed by a study of our group [45]which showed
analytically that the power necessary to control the wake by unsteady rotation varied, for fixed values of the control
parameters A and St;, like the inverse of the square root of the Reynolds number. Therefore, since the wake flow
remains two-dimensional up to a value of the Reynolds number approximately equal to 190 where a spanwise
supercritical Hopf bifurcation occurs and where the three-dimensional effects appear [46,47], the “optimal” value
of the Reynolds number for our two-dimensional study is slightly lower than 200. However for facilitating the com-
parisons with the results of the literature, a Reynolds number of 200 is considered. According to the observations of
[38], the control minimizing the drag generates vortices that are less energetic than those produced by the stationary
cylinder. An energetic criterion seems to be well adapted to the investigation of drag reduction. Therefore, due to
the energetic optimality of convergence of the POD basis [7,8,48], the choice of POD to develop a reduced-order
model of the controlled unsteady flow seems to be well adapted. A similar approach was already considered in
[16,49] to control the wake flow at a supercritical Reynolds number of 100.

Finally, we need to choose between the two opposite strategies discussed at the end of Section 1.1. If we
want to develop active flow control method that can be used for real-time, on-line feedback control, our inter-
est is to include in the snapshot set all the information needed during the optimization process or at least as
much information as we can, and then to generate the reduced-order basis. Following this approach the POD
functions are determined once for all at the beginning of the optimization process and no refresh is realized.
This method was successfully applied to control the cylinder wake flow in [15]. It was demonstrated that an
accurate and robust POD ROM can be derived using a snapshot ensemble for POD-based on chirp-forced
transients of the flow. Moreover, 25% of relative drag reduction was found when the Navier-Stokes equations
were controlled using an harmonic control law deduced from the optimal solution determined with the POD
ROM. However, the excitation used to determine the generalized POD functions lacks of justifications and,
with this particular approach, there is no mathematical assurance that the optimal solution based on the
POD ROM corresponds to a local optimizer for the high-fidelity model. The same remark can be made con-
cerning the approaches presented in [17,18] and [19]. Indeed, in these articles, a new POD ROM is determined
when the control law does not evolve sufficiently with the previous model. With this strategy, there is not any
proof that the control which is finally obtained is solution of the initial problem of optimization. Therefore, in
this paper, we propose to use a specific adaptive method called trust-region proper orthogonal decomposition
(TRPOD) to update the reduced-order models during the optimization process. This approach, originally
introduced by [50], benefits from the trust-region philosophy [51], for an introduction. Then, rigorous conver-
gence results guarantee that the iterates produced by the TRPOD algorithm will converge to the solution of
the original optimization problem defined with the Navier—Stokes equations, the so-called global convergence®

3 Let us consider a general unconstrained optimization problem min.cpsf(c). The global convergence result of the trust-region methods
states [50], for example that lim;_||Vf(¢x)|| = 0 where k represents the index of a current iterate of the iterative method.
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of the trust-region methods. Moreover, in [15], the POD basis used to derive the reduced-order models rep-
resented only velocities. Therefore, a drag-related cost functional characteristic of the wake unsteadiness
was minimized. Since the pressure term contributes to approximately 80% of the total drag coefficient for a
Reynolds number equal to 200, here, a pressure POD basis was determined (Section 4.1), allowing us to con-
sider the total drag as objective functional in our optimal control approach (Section 4.3).

The main objective of this paper is to demonstrate in a simple flow control configuration that the use of the
TRPOD algorithm can be successful to determine at least a local minimizer of the original problem. To sup-
plement this main result, we will also give an estimate of the computational savings that can be obtained by a
POD ROM based optimal control approach compared with the more “‘classical” approach where the Navier—
Stokes equations are used for constraints [38-40]. Consequently in this study our main concern is not to deter-
mine the control law with the maximum energetic efficiency as it can be characterized for example by the
power saving ratio (PSR) [40], for a definition or hereafter in Section 5.2.3. As far as we know (see Table
1), the work presented in [40] is the only one which considers for cost functional the sum of the drag power
and the control power thus making it possible to determine an optimal solution that is by construction ener-
getically efficient. In the other works, the cost of the control is not considered or at best as a regularization
parameter. This discussion will be developed in Section 5.2.3 where we compare the energetic efficiency of
the different approaches.

This manuscript is organized as follows. Section 2 begins with the introduction of the generic controlled
flow configuration. In the next two subsections, a mathematical expression of the mean drag coefficient is first
introduced (Section 2.2), then an open-loop control study of the cylinder wake is carried out (Section 2.3). The
optimization by trust-region methods and POD reduced-order models is presented in Section 3 where the
trust-region POD (TRPOD) algorithm is formally introduced. Following the philosophy of trust-region
methods, a robust surrogate function for the mean drag coefficient is then constructed in Section 4. The
key enablers are the extension of the POD basis to the pressure field (Section 4.1) and the introduction of
non-equilibrium modes in the POD expansion to represent different operating conditions (Section 4.2).
Finally, we formulate an optimal control problem for the POD ROM (Section 5.1) and present the numerical
results of the mean drag minimization of the cylinder wake flow obtained by a suboptimal and an optimal
(TRPOD) POD-based adaptive controllers (Section 5.2).

2. Problem formulation
2.1. Flow configuration and governing equations

Let Q be a two-dimensional bounded region filled with a Newtonian incompressible viscous fluid of kine-
matic viscosity v and I" denote the boundaries of Q (Fig. 1). The velocity vector is u = (u, v), where u and v are
the components in the e, and e, direction, respectively. Pressure is denoted by p. In the following, all variables
are assumed to be non-dimensionalized with respect to the cylinder diameter D (R) is the corresponding
radius) and the uniform velocity of the incoming flow U... [0, T] corresponds to the time interval during which
the flow is considered.

Mathematically, the problem can be described by the incompressibility condition and the two-dimensional
unsteady Navier—Stokes equations

V-u=0 inQx|0,T], |
@iV -(u®@u)=-Vp+LAu inQx|0,T], (m)

where Re = U,D/v is the Reynolds number.

The objective of this study is the mean drag minimization of the wake flow by rotary oscillation of the
cylinder as in the experiments of [21]. The rotary control will be characterized by the instantaneous tangential
velocity y(¢). In [15], no particular assumption was done on the variation of the control law, y. Here, y(¢) is
sought using the optimal control theory as an harmonic function of the form

p(t) = Asin(2nStst),
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where A and St; = f;D/ U, are the amplitude and the Strouhal number of the forcing, respectively. Finally, for
later notations convenience, we introduce the control vector ¢ = (4, St)".

The same Navier—Stokes solver as in [15] was used for this study. The reader is thus refered to [15] or [52]
for a description of the numerical methods.

2.2. Mean drag coefficient

In a viscous flow the total forces acting on a body are contributed by the pressure and skin friction terms.
For a circular cylinder, the instantaneous drag coefficient Cp is given by Cp(f) = Cp(U) where
U= (u,v,p) = ",p)" is the vector corresponding to the velocity and pressure fields obtained as solutions
of the Navier—Stokes equations (1), and where Cp is the drag operator defined for any given vector
b= (by,by,b3)" in R as

m 1 abl 1 abl
RP—-R — —— Ny — — = .
Cp b 2/0 <b3 Ny e d ny . 6y ny)RdH (2)

In (2), n, and n, are the projections of n, the external normal vector to the boundary I'c, onto the cartesian
basis vectors e, and e, respectively, and 0 is an angle defining the curvilinear coordinate of a point on I.
By convention, this angle is initialized at the front stagnation point of the cylinder (see Fig. 1).

For the optimal control procedure, the objective function will correspond to the mean time drag coefficient
estimated over a finite horizon 7 equal to a few vortex shedding periods, i.e.

TW) = (Col0); = Eo), =1 [ Covar )

T T T
LY

Amplitude A

Fig. 2. Variation of the mean drag coefficient with 4 and Sty at Re =200. Numerical minimum: (4min,St,,) = (4.25,0.74); [38]:
(4, Str) = (3,0.75); [39] (not shown): (4, St;) = (3.25, 1.13); [15]: (4, St;) = (2.2,0.53).
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2.3. Open-loop control of the cylinder wake

The main results of an open-loop control study performed numerically at Re = 200 to validate a posteriori
the control law obtained with the POD-based optimization method are now summarized. In order to analyze
the influence of the forcing parameters 4 and St; onto the mean drag coefficient, a series of simulations with
different amplitude 4 varying from 0 to 6.5 by step of 0.5 and different forcing Strouhal number St; varying
from 0 to 1. by step of 0.1 was made. For a Reynolds number equal to 200, the forcing frequency St; ranges
from one-half to five natural shedding frequency St,. For every forcing frequency our simulations are per-
formed for a sufficient long time (T's = 130) to assure that the saturated state has been reached. All simulations
have been done with the same time step, here equal to 1.5 x 1072 In Fig. 2, we visualize the contours of the
mean temporal drag estimated over the last 30 units of time in the space spanned by the forcing parameters A4
and St. In this figure, interpolations by spline functions were done between the values of mean drag coefficient
obtained for the various control parameters. Numerically, the mean drag coefficient reaches a minimal value,
which appears to correspond to a global minimum of the drag function on the domain studied, for an optimal
pair (Amin, St ) = (4.25,0.74). The corresponding minimum value is 0.99. It is noticeable that the function
defined by the mean drag coefficient is rather regular, and that the minimum is located in a smooth valley.
Another striking feature of this open-loop control study is that with the use of a sinusoidal control law on
the whole cylinder the minimal value of the mean drag coefficient remains greater than that obtained for
the basic flow (<Ct£,aSi°>T =0.94 at Re = 200, see [15]) as it was argued by [30]. In other words, the value of
the mean drag correction term is always positive.

3. Optimization by trust-region methods and POD reduced-order models

The philosophy of combining trust-region methods with approximation models of different level of reliabil-
ity is a well-known technique in multidisciplinary design optimization that is named surrogate optimization
[44]. In the spirit of this approach, the trust-region proper orthogonal decomposition (TRPOD) was recently
proposed in [50] and [53] as a way to overcome the main difficulties related to the use of a POD ROM to solve
an optimization problem. First, when the POD technique is embedded into the concept of trust-region frame-
works with general model functions (see [54] for a comprehensive survey or [51] for an introduction on trust-
region methods) a mechanism is provided to decide when an update of the POD ROM is necessary during the
optimization process. Second, from a theoretical point of view, global convergence results exist [5S0] that prove
that the iterates produced by the optimization algorithm, started at an arbitrary initial iterate, will converge to
a local optimizer for the original model.

Hereafter, we consider that the flow control problem (minimization of the mean drag coefficient for exam-
ple) can be formulated as an unconstrained optimization problem

l;l'elg]l j(CNS(C)ﬂ 0)7 (4)

where J : R" x R"—R represents the objective function and where {y\g and ¢ respectively represent the state
variables obtained by numerical resolution of the state equations and the control variables. The subscript NS
means that the state equations which connect the control variables ¢ to the state variables are the Navier—
Stokes equations.

Since an accurate computation of the state variables ¢ for given ¢ is computationally expensive when the
Navier—Stokes equations are used as the state equations, the evaluation of 7 during the solution of the opti-
mization process (4) is computationally expensive. A reduction of numerical cost can be achieved by employ-
ing a POD ROM as the state equation. In such a way an approximate solution {pgp of the state variables ¢ is
obtained and the optimization problem (4) is then replaced by a succession of subproblems of the form

I}g{,} J (Cron (), €). ()

Usually, a POD ROM is constructed for a specific flow configuration, e.g., for an uncontrolled flow or for a flow
altered by a specified control. Therefore, the range of validity of a given POD ROM is generally restricted to a
region located in the vicinity of the design parameters in the control parameter space, the so-called trust-region. It
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is then necessary to update the POD ROM during the iterative process, the crucial point being to determine when
such a reactualization must take place.

Let A% > 0 be the trust-region radius and ¢® be the control vector obtained at an iterate k of the optimi-
zation process. To evaluate the function J({ns(c®),e®), it is necessary to determine the state variables
{ns(e®). These variables are obtained by resolution of the high-fidelity model, the Navier-Stokes equations
solved with ¢ = ¢). Then, we compute snapshots that correspond to the flow dynamics forced by ¢*). These
snapshots form the input ensemble necessary to generate a POD basis {gbf“}lil “““ Npop- 1118 POD basis can then
be used via a Galerkin projection of the Navier—Stokes equation onto the POD eigenvectors to derive a POD
ROM for ¢ (see Section 4.1.2). After integration in time of this POD ROM, the state variables {pop(c¥)) are
estimated, and thus the function J ({pop(c¢*), ¢*¥)) is evaluated. Since this POD ROM can be employed for an
optimization cycle, we define

(e +59) = T (Gpop (e + 59, + ), (©)
as a model function for
S+ 59) = T (Gns(e) + s9), ) 450, ™

on the trust-region [|s®]| < A® around ¢®.
One is then brought to solve the corresponding trust-region subproblem defined as

méan(k)(c(k) +5), st |s| <A®. (8)
seR”
Initialization: ¢, Navier-Stokes resolution, J©. k = 0.

A©

Construction of the POD ROM k=k+1

and evaluation of the model . .
iteration successful

objective function m®)

AG+HD) 5 AK)
Al — AB)
AGHD) 2 AR
Solve the optimality system based on
k=k+1 f/
the POD ROM under the constraints A®)
. . k k+1
using the process discussed in § 5.1 iteration c® )
unsuccessful
A
D) = ®) 4 5@ | and m® (c®+D) bad medium good ?
Fle®+D) :
Solve the Navier-Stokes equations for ¢*+1) EV&IU&UOEL Olf) the PCI'(f;J)I'Hl‘(HlCO
Fet#D) — flet
and estimate a new POD basis ( ) (c?)
1m0 (k1)) — ) (k)

Fig. 3. Schematic representation of the TRPOD algorithm.
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Following the trust-region philosophy [54], it is not necessary to determine the exact step solution of the prob-
lem (8). It is sufficient to compute a trial step s*) that achieves only a certain amount of decrease for the model
function [55]. However, due to the low computational costs involved to solve the reduced-order model, the
problem (8) can be solved exactly (see the optimal control formulation described in Section 5.1).

In order to estimate the quality of the presumed next control parameters ¢**!) = ¢®) + s®) where s is the
solution of (8), we compare the actual reduction in the true objective, f(c**V) — f(¢®), to the predicted
reduction obtained with the model function m® (e*+1) — m®) (¢®)). Essentially, it is this comparison that gives
a measure for the current models prediction capability. If the trial step s*) yields to a satisfactory decrease in
the original objective functional in comparison to the one obtained by the model function, the iteration is suc-
cessful, the trial step s is accepted and the model m™® is updated, i.e. a new POD ROM is derived that incor-
porates the flow dynamics as altered by the new control ¢, Furthermore, if the achieved decrease in f
indicates a good behavior of the model m®), the trust-region radius A* can be increased. Now, if there is
a limited predicted decrease compared to the actual decrease, we have the possibility to decrease slightly
the value of the trust-region radius. For unsuccessful iterations, the trial step s%) is not accepted, the trust-
region radius A% is decreased and the trust-region subproblem (8) is solved again within a smaller trust-
region. With the contraction of the trust-region it is more likely to have a good approximation to the true
objective functional with the POD ROM. The corresponding TRPOD algorithm is schematically described
in Fig. 3 and given in Appendix A. The proofs of global convergence of this algorithm are detailed in [50].
The main results can be found in [56].

4. A robust POD-based estimator for drag function

The objective of this study is the minimization of the mean time drag coefficient of the circular cylinder, i.e.
of the cost function J(U) given by (3). Here, U is solution of the Navier-Stokes equations (1). However, the
value of the cost function J can also be evaluated from the state variables U rebuilt after integration of a
POD based control model.

Consequently, while the real objective function writes

1

j(U):?/O Cp(U)dt, )

the model function is
~ 1 /T ~
(0 :?/ Co(T)dr. (10)
0

Clearly, the pressure field appears in (10). However, for a Reynolds number roughly equal to 200, it is well-
known [20,56] that the pressure term contributes to approximately 80% of the total drag coefficient. So that
the model function cost represents accurately the real function cost, it is thus necessary to include the pressure
field in the POD model. This is the aim of the following section.

4.1. POD reconstruction of the pressure field

4.1.1. Determination of a pressure POD basis

In most of the POD applications, only the velocity field is decomposed. For experimental work, that can be
quite simply explained by the fact that in the majority of the cases the pressure data is unavailable. The con-
tribution of the pressure term is then neglected in the POD ROM. In many closed flows, it can be demonstrated
rigorously that this contribution is exactly zero. For convectively unstable shear layers, as the mixing layer or
the wake flow, it was proved in [57] that neglecting the pressure term may lead to large amplitude errors in the
Galerkin model hence the need for introducing a pressure term representation [57,58]. For our application,
pressure plays an important role and must be incorporated into the POD formulation. One way is to derive
the pressure from the velocity field by solving a Poisson equation in the low-dimensional POD subspace. In this
respect, the first analytical pressure term representation for open flows has been performed for POD Galerkin
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models based on the Navier—Stokes equations in primitive variables by [57]. This method seems natural for an
incompressible flow. It is in addition the only one that can be used when no pressure field is available. However,
solving a Poisson equation in the POD subspace requires the development of a specific Poisson solver. More-
over, this formulation of the problem does not constitute per se a reduced-order model of dynamics. A second
option is to consider the state vector U as input-data for applying the POD technique. Here, since the data are
issued from numerical simulations [48], for a justification, the snapshot POD introduced by [8] is adopted.
Finally, after application of the POD, the field U can be expanded with arbitrary accuracy as

Npop

Ulx, 1) = Ol Vrol(x, ) = U, (x) + (e, 1) Uelx) + Y ailt) (), (11)

where Npop is equal to the number of flow realizations contained in the input ensemble used to determine the
POD modes. For later reference, the estimation U <!-¥rool of U is introduced, where the brackets contain
the indices of all employed modes. In (11), the mean field U,,, the actuation mode U, and the POD basis func-
tions {p, = (¢*, ¢!, ¢*)"} 17" are computed using the following algorithm:

(1) Use the control function method introduced in the POD ROM context by [16] to determine a reference
flow field U, (x) = (uc(x), ve(x), p.(x))". Here,*U, is generated as the solution of the Navier-Stokes equa-
tions for a unit control (y = 1) and homogeneous boundary conditions for the uncontrolled boundaries
(see Fig. 6(k) for a streamlines representation of ).

(2) Compute the mean flow U,(x) as the ensemble average of the modified snapshots set {U(x,t)—
(e, t;) Ue(x) }?il:

1 &
Un(x) =+ 2 _{U(x, 1) = y(e,1:) Uelx)},

L=l
where U (x, t;) correspond to N, flow realizations, taken at time instants ¢, € [0,T],i = 1,...,N,. In the
case of incomplete or noisy data sets (obstructed view of PIV measurements for instance), we need to
mention that interpolation methods (Kriging or “gappy” POD) can be used to reconstruct unsteady flow
fields [60,61].

(3) Define the fluctuation fields Uspp:

Usnap(xv ti) = U(xv ti) - ’))(C, ti) UC(x) - Um(x)'

(4) Build the temporal correlation matrix C of components C;; defined as

C” = (Usnap(x, tl‘), Usnap(x, tj))Q = /{; Usnap(x,t[) . Usnap(x, tj) dx‘

(5) Compute the eigenvalues 4;,...,4y, and the temporal eigenvectors ¥i,...,¥y, of C where
¥, = (W;(0), W), .., W(tw,)

(6) Compute spatial modes ¢; by linear combination of the temporal eigenvectors ¥; and the snapshots
Usnap:

¢,(x) = z%(tj) U sap(x,1)).

4 Recently, a general method was proposed in [59] to determine the actuation mode U,. This approach named control input separation
consists in seeking the actuation mode U which is solution of the following optimization problem:

;
N,

. 2
ggwlu ; HUsnap(x: t[) - pSUsnap(xa ti) - V(ti)UC(x)”Q

where H is a real Hilbert space and where Ps denotes projection onto S, the space spanned by the POD eigenfunctions of the uncontrolled
configuration (y = 0). By definition, the choice U, = U7, is optimal, in the sense that the energy not captured by the expansion (11) achieves
its minimum for U, = U}. In addition, it was shown in [59] that the actuation mode is not significantly dependent on the specific excitation
y used to determine it.
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(7) Normalize the modes ¢, to determine the spatial POD basis functions ¢, = (¢}, ¢;, ¢? )"

®;
g =
:llo

As illustration of this procedure, a POD basis including the pressure field was computed from numerical
snapshots of the controlled wake flow (y(¢) = 4 sin(2nSt;t) with 4 = 2 and St; = 0.5). For that, 360 snapshots
taken uniformly over T, = 18 were considered. It was shown that the first 14 POD modes are necessary to
represent 99.9% of the Relative Information Content defined, in function of the number of POD modes con-
sidered in the summation say M, as RIC(M) = S, 2;/S°*? ;. The norm of the first six pressure modes are
displayed in Fig. 4. Similar representations for the velocity POD modes can be found in [52].

4.1.2. POD ROM of the controlled cylinder wake

The derivation of the POD ROM for the controlled cylinder wake is described in details in Section IV.B of
[15]in the case of eigenfunctions based only on velocity fields. As a matter of interest, it is shown that a Galer-
kin projection of the Navier—Stokes equations on the space spanned by the first Ny, + 1 POD modes yields to

(a) mode 1. (b) mode 2.

(c) mode 3. (d) mode 4.

(e) mode 5. (f) mode 6.

Fig. 4. Pressure POD basis functions for the controlled cylinder wake at Re = 200. The first six POD modes ¢ are visualized by iso-
contour lines of their norm (||¢”||,) for y(¢) = Asin(2nSt¢) with 4 = 2 and Str = 0.5.
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Fig. 5. Comparison of the prediction and projection relative errors based on # and on p for the controlled cylinder wake flow
(y(t) = Asin(2nSt;t) with 4 = 2 and St; = 0.5). The approximations # and p are evaluated for Ny, = 14.

da(t) Nga] Ngal Nga] d'y Ngal
g AT ; Bjja;(t) + ; ; Cwa(t)ar(t) + Di g+ (&- + ]Z:O: ]—‘,,-a_,-(t)) 7(e,1)
+Giy*(e,t), i=0,...,Ngu, (12a)

with the following initial conditions:

a;(0) = (u(x,0) — u,,(x) — y(c,0)uc(x),¢,(x))g, i=0,...,Nga. (12b)
In (12a), N is usually determined as the smallest number of POD modes necessary to represent 99.9% of the
relative information content and the mode i = 0 correspond to the mean flow field u,,. For an uncontrolled
flow, this mode is typically not solved in the POD ROM [62], for instance] because its amplitude is supposed
to be constant in time (equal to 1). Finally, the coefficients A;, By;, Ciik, Di, £;, F;; and G; depend explicitly on
¢, u,, and u,.. Their expressions are given in [15].

Rigorously, the expression (12a) cannot be used in our case since POD eigenfunctions now represent veloc-
ity and pressure fields. However, in this study, we will consider that this expression remains valid and deter-
mine the coefficients of the POD ROM with calibration methods based on optimization problems [63-65].
These calibration techniques are similar to those which had been used in [15] to represent accurately the con-
trolled dynamics of reference with a POD ROM based on velocity only. The validity of this representation is
now evaluated.

4.1.3. Accuracy of the calibrated POD model
The ability of the calibrated POD ROM to represent correctly the dynamics of the controlled flow can be
assessed by the time evolution of the relative error based on u, E,. This error measure is defined as

— pylm,e,1,. Ny _ alme,l,... N,
u[ g1]7 u u[ gal])g

R = (),

)

where al"¢1+Vel corresponds to the approximation of the exact flow u when only the first N g,y POD modes are
retained in (11). A similar truncation error E, based on p can be defined.

For a given control ¢, the approximations # and p can be evaluated either using the projection coefficients,
or using the prediction coefficients obtained by numerical integration of the controlled POD ROM based on
U. Fig. 5 represents a comparison of the corresponding errors for the projected modes (projection error) and
the predicted modes (prediction error). As it could be expected from the optimality of the POD modes, the
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values of the projection error remain low throughout the time window, the amplitude of E, being even lower®
than that of E,. As for the prediction error, its values are slightly higher than those obtained for the projection
error but no time amplification of the errors is observed. Consequently, one can consider that the calibrated
POD ROM based on U represents accurately the temporal dynamics of the velocity and pressure fields, at least
for values of the control ¢ close to those used for the design. However, although the range of the POD ROM
cannot be evaluated precisely, it is well-known that the performances of the model tend to deteriorate quickly
with the change of the control parameters [66,13]. Recently, Noack et al. [14] reviewed the key enablers to the
use of empirical Galerkin models for feedback flow control and suggested the introduction of non-equilibrium
modes in the POD expansion as a way to enhance the range of validity of the controlled POD ROM.

4.2. POD basis functions with non-equilibrium modes

To describe two or more operating conditions in a single POD expansion, Noack et al. [13,14] proposed to
add special modes, called non-equilibrium modes, to the original POD basis functions. Essentially, these non-
equilibrium modes will be, either particular modes not taken into account in the original model but known to
play a major role in the description of the flow dynamics (stability eigenmodes for example), or translation
modes (also called shift modes) that allow the description of the transition (natural or forced) from the uncon-
trolled configuration to the optimal controlled flow. Orthonormality of the POD basis functions is then
enforced in the enlarged set of modes using a Gram-Schmidt procedure described in [13]. In that paper, Noack
et al. demonstrated that the inclusion of a shift mode representing the mean field correction in an empirical
Galerkin model of a wake flow significantly improves the resolution of the transient dynamics from the onset
of vortex shedding to the periodic von Kdrman vortex street. They also showed that the inclusion of stability
eigenmodes further enhances the accuracy of fluctuation dynamics. The velocity and pressure fields U can then
be expanded as

N;al N§;|1+N1‘eq
U(x, 1) = U™ 1) =3 "ai(t) dy(x) + Y ailt) d(x) +9(e, 1) Ue(x). (13)
i=0 i:N;al-%—l

Three different types of modes are employed in this expansion:

(1) POD modes: (N wl T 1) POD modes are used to represent the dynamics of the reference operating con-
dition. Here, the value of N, is determined by using exactly the same energetic criterion that was dis-
cussed in Section 4.1.2 for Ng,.

(2) Non-equilibrium modes: N, non-equilibrium modes are added to describe new operating conditions.
When non-equilibrium modes are introduced in the model to represent the dynamics of controlled con-
figurations, the mean flow mode (i = 0) can have a transient state during which energy is exchanged with
the non-equilibrium modes.

(3) Actuation mode: U, is determined by the control function method. This method is used to introduce
explicitly the control in the model. The actuation mode corresponds to predetermined dynamics. It is
thus not modified by the dynamical evolutions intervening during the control process.

A controlled POD ROM similar to that described in Section 4.1.2 can thus be derived. This model is dif-
ferent from the previous one essentially by the modes used in the Galerkin projection. After calibration, this
model is that used in the remainder of the article to describe the controlled dynamics of the wake flow. To
simplify, we will continue to refer to (12a) for the system of equations of the controlled POD ROM.

As it was already discussed at length in the introduction, the principal difficulty in the use of a POD ROM
to solve an optimization problem is that neither the optimal parameters, nor the optimal path in the control
parameter space are known in advance. Consequently, if the dynamics I corresponding to the uncontrolled

5 This result should however be moderated because the error made on the representation of the velocity field u is the sum of the errors on
the components u and v.
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flow is naturally known, it is impossible to know in advance what are the dynamics /7, /11, IV, ... which will be
the most relevant to introduce in the model. Recent work [10] seems to demonstrate that centroidal Voronoi
tessellations could be one method of intelligent sampling in parameter space. Here, a simpler method is
adopted, the snapshots being taken randomly in the control parameter space. Hereafter, the following dynam-
ics are considered:

e dynamics I: controlled flow with 4 =2 and St = 0.5,

e dynamics II: controlled flow with 4 = 4 and St = 0.1,

e dynamics //I: natural flow 4 =0,

e dynamics /V: unstable steady basic flow. It was argued in [30] that this configuration corresponds to the
lowest mean drag reduction that can be achieved under rotary control 